2 Probability
For the following section, \(A\) and \(B\) represent events in the sample space \(S\).
2.1 Axioms
- \(\mathbb{P}(A) \geq 0 \quad \forall A \subset S\)
- \(\mathbb{P}(S) = 1\)
- If \(A \cap B = \emptyset\), then \(\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)\)
2.2 Union Rule
\(\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)\)
2.3 Inclusion-Exclusion Principle
\(\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)\)
2.4 De Morgan’s Laws
\((A \cup B)^c = A^c \cap B^c\)
\((A \cap B)^c = A^c \cup B^c\)
2.5 Conditional Probability
\(\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}\)
\(\mathbb{P}(A) = \mathbb{P}(A|B)\mathbb{P}(B) + \mathbb{P}(A|B^c)\mathbb{P}(B^c)\)
2.6 Bayes’ Theorem
\(\mathbb{P}(B_j|A) = \frac{\mathbb{P}(A|B_j)\mathbb{P}(B_j)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B_j)\mathbb{P}(B_j)}{\sum_{i=1}^k \mathbb{P}(A|B_i)\mathbb{P}(B_i)}\)
2.7 Independence
If events \(A\) and \(B\) are independent: \(\mathbb{P}(A|B) = \mathbb{P}(A)\)
2.8 Counting Examples
- There are \(n!\) ways to arrange \(n\) distinct elements in an ordered list.
- There are \(6^n\) outcomes for \(n\) tosses of a \(6\)-sided die.