1 Calculus Review
1.1 Logarithms
\(\log_b a = x \leftrightarrow b^x = a\)
\(e^{c \ln x} = x^c\)
1.2 Derivative & Integration rules
Derivative | Integral |
---|---|
\(\frac{d}{dx} x^n = nx^{n-1}\) | \(\int x^n dx= \frac{x^{n+1}}{n+1}+c\) |
\(\frac{d}{dx} n^x = n^x \ln x\) | \(\int n^x dx = \frac{n^x}{\ln n} + c\) |
\(\frac{d}{dx} \ln x = \frac{1}{x}\) | \(\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| +c\) |
\(\frac{d}{dx} e^x = e^x\) | \(\int e^x dx = e^x + c\) |
\(\frac{d}{dx} \sin x = cos x\) | \(\int \sin x dx = -\cos x + c\) |
\(\frac{d}{dx} \cos x = -\sin x\) | \(\int \cos x dx = \sin x + c\) |
\(\frac{d}{dx} \tan x = \sec^2 x\) | \(\int \tan x = \ln|\sec x| + c\) |
\(\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx\)
\(\int x f(x) = x F(x) + f(x)\)
1.2.1 Quotient Rule
\(\frac{d}{dx}(\frac{f( x )}{g( x )}) = \frac{f^\prime( x )g( x ) - f( x )g^\prime( x )}{g^2( x )}\)
1.2.2 Integration by substitution
\(u = g(x)\)
\(\int_a^b f(g(x)) g'(x) dx = \int_{g(a)}^{g(b)} f(u) du\)
1.2.3 Integration by parts
Assign \(u\) and \(dv\), differentiate \(u\) to find \(du\), integrate \(dv\) to find \(v\), then solve:
\(\int_a^b u dv = \left[uv\right]_a^b - \int_a^bvdu\)
1.3 Trigonometry
1.3.1 SOH CAH TOA
1.3.2 Basic Identities
1.3.3 Pythagorean Identities
\(\sin^2x + \cos^2x = 1\)
\(\tan^2x + 1 = \sec^2x\)
\(1 + \cot^2x = \csc^2x\)